Exercise 5

(a) Let a denote any fixed real number and show that the two square roots of $a+i$ are

$$
\pm \sqrt{A} \exp \left(i \frac{\alpha}{2}\right)
$$

where $A=\sqrt{a^{2}+1}$ and $\alpha=\operatorname{Arg}(a+i)$.
(b) With the aid of the trigonometric identities (4) in Example 3 of Sec. 10, show that the square roots obtained in part (a) can be written

$$
\pm \frac{1}{\sqrt{2}}(\sqrt{A+a}+i \sqrt{A-a}) .
$$

(Note that this becomes the final result in Example 3, Sec. 10, when $a=\sqrt{3}$.)

Solution

Part (a)

For a nonzero complex number $z=r e^{i(\Theta+2 \pi k)}$, its square roots are

$$
z^{1 / 2}=\left[r e^{i(\Theta+2 \pi k)}\right]^{1 / 2}=r^{1 / 2} \exp \left(i \frac{\Theta+2 \pi k}{2}\right), \quad k=0,1 .
$$

The magnitude and principal argument of $a+i$ are respectively

$$
r=\sqrt{a^{2}+1^{2}}=\sqrt{a^{2}+1} \quad \text { and } \quad \Theta=\operatorname{Arg}(a+i),
$$

so

$$
\begin{aligned}
(a+i)^{1 / 2}=\left(\sqrt{a^{2}+1}\right)^{1 / 2} \exp \left(i \frac{\operatorname{Arg}(a+i)+2 \pi k}{2}\right) & =\sqrt{A} \exp \left(i \frac{\alpha+2 \pi k}{2}\right) \\
& =\sqrt{A} \exp \left(i \frac{\alpha}{2}\right) e^{i \pi k}, \quad k=0,1
\end{aligned}
$$

The first root $(k=0)$ is

$$
(a+i)^{1 / 2}=\sqrt{A} \exp \left(i \frac{\alpha}{2}\right)
$$

and the second root $(k=1)$ is

$$
\begin{aligned}
(a+i)^{1 / 2}=\sqrt{A} \exp \left(i \frac{\alpha}{2}\right) e^{i \pi}=\sqrt{A} \exp \left(i \frac{\alpha}{2}\right)(\cos \pi+i \sin \pi) & =\sqrt{A} \exp \left(i \frac{\alpha}{2}\right)(-1+i 0) \\
& =-\sqrt{A} \exp \left(i \frac{\alpha}{2}\right)
\end{aligned}
$$

Part (b)

The trigonometric identities (4) in Example 3 of Sec. 10 are

$$
\begin{equation*}
\cos ^{2} \frac{\alpha}{2}=\frac{1+\cos \alpha}{2}, \quad \sin ^{2} \frac{\alpha}{2}=\frac{1-\cos \alpha}{2} . \tag{4}
\end{equation*}
$$

Take the square roots of both sides of each equation.

$$
\cos \frac{\alpha}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}}, \quad \sin \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{2}}
$$

Since a is real, $\alpha=\operatorname{Arg}(a+i)$ is either in the first or second quadrant $(0<\alpha<\pi)$. This means that $\alpha / 2$ is in the first quadrant, so the positive signs are chosen.

$$
\cos \frac{\alpha}{2}=\sqrt{\frac{1+\cos \alpha}{2}}, \quad \sin \frac{\alpha}{2}=\sqrt{\frac{1-\cos \alpha}{2}}
$$

The square roots of $(a+i)^{1 / 2}$ become

$$
\begin{aligned}
(a+i)^{1 / 2} & = \pm \sqrt{A} \exp \left(i \frac{\alpha}{2}\right) \\
& = \pm \sqrt{A}\left(\cos \frac{\alpha}{2}+i \sin \frac{\alpha}{2}\right) \\
& = \pm \sqrt{A}\left(\sqrt{\frac{1+\cos \alpha}{2}}+i \sqrt{\frac{1-\cos \alpha}{2}}\right) \\
& = \pm \frac{1}{\sqrt{2}}(\sqrt{A+A \cos \alpha}+i \sqrt{A-A \cos \alpha}) .
\end{aligned}
$$

Suppose first that a is positive. Then

$$
\alpha=\operatorname{Arg}(a+i)=\tan ^{-1} \frac{1}{a}
$$

and

$$
\cos \alpha=\cos \tan ^{-1} \frac{1}{a} .
$$

Draw the implied right triangle to determine the cosine.

As a result,

$$
\cos \alpha=\frac{a}{\sqrt{a^{2}+1}}=\frac{a}{A} \quad \rightarrow \quad A \cos \alpha=a
$$

and

$$
(a+i)^{1 / 2}= \pm \frac{1}{\sqrt{2}}(\sqrt{A+a}+i \sqrt{A-a})
$$

Suppose secondly that a is negative. Then

$$
\alpha=\operatorname{Arg}(a+i)=\tan ^{-1} \frac{1}{a}+\pi
$$

and

$$
\cos \alpha=\cos \left(\tan ^{-1} \frac{1}{a}+\pi\right)=\cos \left(-\tan ^{-1} \frac{1}{a}-\pi\right)=\cos \left(\tan ^{-1} \frac{1}{-a}-\pi\right)=-\cos \tan ^{-1} \frac{1}{-a} .
$$

Draw the implied right triangle to determine the cosine.

As a result,

$$
\cos \alpha=-\left(\frac{-a}{\sqrt{a^{2}+1}}\right)=\frac{a}{\sqrt{a^{2}+1}}=\frac{a}{A} \quad \rightarrow \quad A \cos \alpha=a
$$

and

$$
(a+i)^{1 / 2}= \pm \frac{1}{\sqrt{2}}(\sqrt{A+a}+i \sqrt{A-a}) .
$$

This same result holds regardless of whether a is positive or negative.

